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Synchronization and beam forming in an array of repulsively coupled oscillators
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We study the dynamics of an array of Stuart-Landau oscillators with repulsive coupling. Autonomous
network with global repulsive coupling settles on one from a continuum of synchronized regimes characterized
by zero mean field. Driving this array by an external oscillatory signal produces a nonzero mean field that
follows the driving signal even when the oscillators are not locked to the external signal. At sufficiently large
amplitude the external signal synchronizes the oscillators and locks the phases of the array oscillations.
Application of this system as a beam-forming element of a phase array antenna is considered. The phase
dynamics of the oscillator array synchronization is used to reshape the phases of signals received from the
phase array antenna and improve its beam pattern characteristics.
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I. INTRODUCTION

The dynamics of arrays of coupled nonlinear oscillators
has been a subject of much attention in recent years. This
interest is caused by important applications of this model
system for understanding the dynamics of coupled Josephson
junctions [1], laser arrays [2], etc. Arrays of coupled nonlin-
ear oscillators also can be used as a core technology for
phased arrays used as transmitting and receiving antennas in
radars and telecommunications [3]. Maintaining certain
phase relationships among oscillators (phase synchroniza-
tion) allows one to control and optimize the directional sen-
sitivity of these antennas (“beam forming”). In Ref. [4], an
array of drive-coupled phase oscillators was suggested as a
beam-forming element of a transmitter antenna. Recently, ar-
rays of coupled nonlinear oscillators have been proposed as a
novel beam-forming element of phase arrays [5,6].

Locally coupled oscillators can be viewed as a discrete
analog of the well-known Ginzburg-Landau equation [7].
This system can exhibit a variety of complex spatially non-
uniform regimes including wave propagation, spiral turbu-
lence, and chaos. The most interesting phenomenon occur-
ring in a globally coupled array of oscillators with distributed
frequencies is the transition to a globally synchronized re-
gime when the coupling strength of oscillators is increased.
In the seminal work by Kuramoto (see Ref. [8]) the first
analytical theory of synchronization in an array of nonlinear
oscillators was developed. This theory is based on a phase
approximation which assumes that amplitudes of individual
oscillators are slaved to their phases. The magnitude of the
mean field found from a self-consistency condition was
found to exhibit a second-order phase transition at a certain
coupling strength. In subsequent work, a more detailed
analysis of this system was performed which also incorpo-
rated the effects of external noise and more general coupling
among oscillators [9—11]. In Ref. [12] the original Kuramoto
model was generalized to allow for variation among cou-
pling coefficients depending on the distance between the
units in physical space which allowed one to bridge the gap
between the two limiting cases of globally and locally
coupled oscillators. In another generalization of the Kura-
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moto model [13], time delays between coupled units were
introduced. In Ref. [14] the Kuramoto model with slowly
evolving coupling coefficients was used as a conceptual
model of plasticity and learning in networks. There have
been a number of studies of the Kuramoto model in external
fields (see, for example, [15-17]). In [18,19] the driven dy-
namics of phase oscillator arrays was studied from the view-
point of beam forming. Use of synchronization among array
of oscillators for the control of the phase distribution along
the array with the oscillator natural frequencies were studied
in [20,21]. A recent review of the Kuramoto model and its
various generalizations can be found in Ref. [22].

In this work we will analyze autonomous and driven dy-
namics of coupled nonlinear oscillators with repulsive cou-
pling [repulsively coupled array (RCA)] which corresponds
to the sign reversal of coupling among the oscillators. Sec-
tion II begins with an illustration of RCA dynamics using
numerical simulations of repulsively coupled Stuart-Landau
oscillators and then presents our analytical results using the
phase oscillator model of the RCA. As we will demonstrate,
without driving, an array of oscillators with identical fre-
quencies settles on one of multiple-synchronized regimes
characterized by zero mean field. The effects of an external
driving of the RCA is discussed in Sec. III. Upon external
driving by a periodic signal, the nonzero mean field emerges,
and at a finite driving amplitude, all oscillators synchronize
with identical phases. The interplay between the phase dis-
tribution of the external driving signals and the tendency of
oscillators to synchronize provides the phase distribution
within the oscillator array which can be beneficial for the
array beam forming. The synchronization effects allow one
to reduce the level of sidelobes and to make a sharp tip of the
main beam. Control and reduction of the sidelobe levels in
conventional phase-array antennas can achieved using a spa-
tial windowing applied to the element signals called shading.
Section IV discusses application of shading in the nonlinear
antenna implemented with the RCA. The results of the study
are summarized in Sec. V. A short account of the work on
nondriven oscillator arrays with repulsive coupling has been
published in Ref. [23].
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FIG. 1. (Color online) Three possible distributions of individual
phases ¢; of five oscillators with identical frequencies. All these
distributions correspond to the vanishing mean field R=0.

II. SYNCHRONIZATION OF STUART-LANDAU
OSCILLATORS WITH GLOBAL REPULSIVE COUPLING

In this section we discuss the collective dynamics of re-
pulsively coupled oscillator array without external forcing.

The array of globally coupled Stuart-Landau oscillators is
described by equations of the form

N
. . K
ij(G+le)Zj_G|Zj|2Zj_]T/E (20— 7)) (1)
n=1

Here z; is a complex variable (z;=x;+iy;) describing the state
of the jth oscillator, N is the number of oscillators in the
array, G is the parameter of nonlinear gain, w; is the natural
frequency, and « is the strength of all-to-all couphng Note
the negative sign in front of the coupling term; this choice
corresponds to the case of repulsive coupling which is the
focus of this paper.

Let us introduce the complex mean field R(r)=3"_,z,(z).
For identical natural frequencies of oscillators (w;=wy), the
mean field reaches zero after an initial transient for arbitrary
small negative coupling strength k<<0. This stationary re-
gime corresponds to all oscillators having identical ampli-
tudes, but different phases (see Fig. 1). However, the phase
distribution has to be neither uniform nor unique: the station-
ary regime can feature an arbitrary phase distribution ¢;
among individual oscillators subject to the only constraint
2 expig;=0

For unequal frequencies of oscillators, simulations show
that the mean field oscillates at small values of coupling. The
transition to the synchronized regime depends strongly on
the number of oscillators in the array. For two and three
oscillators with distributed natural frequencies, the phases of
two oscillators synchronize at a certain critical coupling
value; however, the mean field R does not turn into zero after
the synchronization onset. At larger values of coupling, the
mean field gradually approaches zero. For a larger number of
oscillators N> 3, the oscillators do not synchronize at any
value of «, but the mean field still gradually approaches zero
as the strength of repulsive coupling increases.

Phase approximation

For the theoretical analysis of the synchronization dynam-
ics of the RCA we use the standard simplification known as
the phase approximation (see [19,24]). Namely, we introduce
Zj=a jei“’/ and assume that the magnitudes a; are slaved to ¢;.
This approximation is applicable for G> «. Furthermore, for
large gain G, the amplitudes of all oscillators are close to 1

(see Fig. 2). Ignoring the small deviations a;—1, we obtain
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FIG. 2. (Color online) Examples of the oscillator states z; shown
for the array of 32 oscillators for four different values of the ampli-
tude of external driving. (a) A=0.0, (b) A=0.1, (c) A=0.5, and (d)

A=1.0. The phases of the oscillators (shown by red dots in the

complex z plane) rearrange as A increases. The blue open circle
marks the value of mean field R. The parameters of simulations are
G=5, 5j=w=2'rr, and k=0.4.

the following equation for the phases:
N

;= wj—N_lKE sin(@; = @,)- ()

n=1

In this approximation the mean field R (array output) can be
written in the form

L
R = ilﬁ= —_ i(pn’ 3
re Nz e (3)

so Eq. (2) becomes

@j=w;— Kkrsin(— ;). (4)

For N oscillators with identical frequencies w; () there
exists a family of steady-state solutions of Eq. (2) (pj, cor-
responding to r=0. It can be shown that the Jacobian of the
linearized equation (2) reads

J=—«N'[S-ST+C-CT]

and contains a sum of two outer products for vectors S
={sin ¢’, ..., sin ¢y}" and C={cos ¢, ...,cos @5}, respec-
tively. Since the vectors S and C are linearly independent,
the Jacobian J has N—-2 zero eigenvalues and two nonzero
eigenvalues. The zero eigenvalues indicate the neutral stabil-
ity of these trivial solutions with respect to the rearrangement
of individual phases. The two nonzero eigenvalues can be
found from the equation describing the dynamics of the
mean field R,
Ly
R=-~| R-R"—2> ¥ |, 5)
5 v (

n=1

which can be obtained by multiplying Eq. (2) by exp(i¢;)
and summing over j. For a slightly perturbed solution corre-
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sponding to a small mean field R, one can consider the sum

in the last term a complex constant, C=1%,E‘?ile2"“’? . The two
eigenvalues of Eq. (5) and its complex conjugate are \j,
=—5(1%|C]). Since |C|<1, we obtain that both nonzero ei-
genvalues are negative.

Therefore, the attractor of the N-dimensional phase
space of an array of identical oscillators [2] is an
(N-2)-dimensional continuous set of neutrally stable steady
states. As illustrated in Fig. 1 the final state—i.e., the final
distribution of phases—depends on the initial conditions of
Eq. (2).

For nonidentical frequencies the dynamics of the array is
more complicated and depends on the number of oscillators
in the array. We consider here the simple cases of two, three,
and many (N> 1) oscillators.

Case N=2. For two oscillators with frequencies w,=+ wy,
the symmetry dictates that in the synchronized regime the
mean field must oscillate at the frequency w, and the phases
of the oscillators are symmetric with respect to the mean-
field phase: ¢;=—¢,=¢. The equation for the single phase ¢,

©=wy+ K Cos @ sin @, (6)

has two steady-state solutions ¢=-arcsin(2wyx~')/2 and ¢
=—m/2+arcsin(2wyk"")/2 representing synchronized states.
It is easy to see that the first solution is unstable, but the
second solution is stable. In the synchronized regime (k
>2wy), the mean field decreases with the coupling strength

as
1= V1 - 4wy/x*
R=\—"— (7)

As the value of kw;,' decreases the stable and unstable syn-
chronized states merge together and disappear when Kwal
=<2, resulting in asynchronous motion with monotonously
increasing value of |¢)|.

Case N=3. For the case of three oscillators with a sym-
metric distribution of frequencies w, ;3=w,, W, w;, we can
introduce the phase differences ®;=¢,— ¢, and ®,=¢;— ;3.
The equations for @, , read

(Dl =wy+ ;:[Sin((bl + @2) —sin (Dz + 2 sin q)l],

D, =wy+ g[sin(q)l +@,) —sin®; +2sin P;].  (8)

The symmetric synchronized solution corresponds to the
fixed point ®;=P,=P which is defined by the transcenden-
tal equation

w)=— g[sin ® + sin 20]. 9)

It is easy to see that this equation has two solutions which
merge and disappear via a saddle-node bifurcation for
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However, unlike the case of two oscillators, this condition
defines the existence but not the stability of the synchronized
solution. To determine the condition for a stable synchro-
nized solution, we linearize Egs. (8) near the fixed point (9)
and obtain the eigenvalues of the system in the following
form:

K
N\ =k cos D, )\2=§(2 cos2® +3cos P).  (10)

One can see that both eigenvalues are negative if the steady
state @ is within the range

arccos[ (1 + V@)/S] <|®+ 7| < 7w/2.

Therefore, according to Eq. (9) the stability threshold in the
case of three oscillators with symmetrically distributed natu-
ral frequencies is k=3 wj.

Now let us turn to the case of many oscillators. We will
consider the case of a uniform frequency distribution in the
unit interval [—w,, wg]; however, the results are qualitatively
similar for other distributions as well. In the following we
take wy=1 since this frequency can be scaled out of the
system by changing the time and coupling constant k. It is
easy to see that for large N the synchronized solution must be
unstable. Indeed, according to Eq. (4), if there is a com-
pletely synchronized solution, the corresponding mean field r
must satisfy the condition kr>1. Because of the symmetry,
this solution has to have a real mean field which we for
definiteness assume positive (6=0,r>0). In the limit of
large N the set of equations (4) in the linear approximation
decouples, because perturbing the phase of one of the oscil-
lators without changing phases of other oscillators will only
affect the mean field by the small amount O(1/N). There-
fore, the Lyapunov exponent corresponding to the jth oscil-
lator is Nj=kr cos ¢;+O(1/N). At least some of the phases of
all oscillators must lie inside the interval [—-m/2, /2], be-
cause otherwise the phase of the mean field was = and not
zero. Therefore, at least some of the eigenvalues of the syn-
chronized solution are positive, so the synchronized solution
is unstable for arbitrary «. In fact, our numerical simulations
show that the synchronized solution is unstable at any « for
all N=4.

In the asynchronous regime, the oscillators maintain on
average their natural frequencies; however, due to coupling,
they adjust their phases so as to minimize the mean field. The
equation for the mean field, Eq. (5), for nonidentical frequen-
cies can be generalized as

1 Y 1Y
== 0 ——| R-R" =2 e¥én | 11
N Oy N= € (1)

In the limit of large N the last term on the right-hand side
(RHS) can be neglected and the first term can be approxi-
mated as N7'=N o, e, where &, is random phase of
individual oscillator. The resultant equation
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N
o1 ; K
R=— ‘it — —R 12
TS a2 (12

n=1

can be easily solved. For large « the mean field can be writ-
ten as R=2(«kN)"'=N_ @, e/, Taking into account a uni-
form distribution of natural frequencies [—w,, w] one can get
the standard deviation of the mean field in the following
form:

2 (O

(13)

g,.= — s
V3N K
which agrees very well with numerical simulations at the

large values of N (see Ref. [23]).

III. SYNCHRONIZATION OF THE RCA WITH EXTERNAL
PERIODIC SIGNALS

The dynamics of the Kuramoto model driven by external
periodic fields has been studied in the literature [15-17,22].
If the frequency of an external field differs from the central
frequency of the oscillators, synchronization among the os-
cillators competes with entrainment to the external signal.
For large coupling and small external signal, the mutual syn-
chronization prevails, whereas for large external signal, the
mean field synchronizes to the external driving. In this sec-
tion we consider the case of a driven repulsively coupled
array whose intrinsic dynamics, as we have seen before, dif-
fers qualitatively from that of the classical Kuramoto model.
Suppose that all oscillators have identical natural frequencies
and each oscillator is driven by a sinusoidal signal s;(1)
=A sin(wt+¢;). The array of oscillators is described by the
set of driven Stuart-Landau equations

N
. Il K .
¢=(G+i®)z;— Glz;*z; - N% (z,—zj) + A sin(wt + ¢)),

(14)

where @; now denotes the natural frequency of jth oscillator.
We will first consider the case a plane sine wave coming to a
linear array of detectors from the broadside direction—i.e.,
d’j: bo.

The driving signal induces a sinusoidal mean field in the
oscillator array by rearranging the phase distribution among
the oscillators; see Fig. 2. At small values of the amplitude A
the driving force is insufficient to synchronize the oscillators.
However, it modulates the temporal evolution of phases and
creates a cluster of temporally phase-locked oscillators
which stabilize the phase of the mean field; see Fig. 3. In Fig.
2 the complex amplitude of the mean field R is shown by an
open circle in the plane z;. The amplitude of the mean field is
determined by the “compression” of the oscillator phase dis-
tribution near within the cluster. Driving at sufficiently large
amplitudes A phase-locks the oscillators and forms a & clus-
ter when all oscillators have identical phases. In this case the
synchronization to the driving overcomes the repulsion of
phases among the oscillators; see Fig. 2(d).

The magnitude of the mean field, r=(|R(¢)|), depends on

the level of clustering and, therefore, on the amplitude of
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FIG. 3. (Color online) Time evolution of the oscillator phases of
and the mean-field phase ¢ for (a) A=0.1 and (b) A=0.5. The
parameters of simulations are N=32, G=5, (T)j=w=27'r, and «
=0.4. Despite the slow drift of the oscillator phases the phase of

mean field remains steady.

input signal, A, and the strength of phase repulsion . Syn-
chronization of oscillators by the external signal results in
the linear input-output characteristics (i.e., r vs A depen-
dence) for A<A,.. At A=A, the array behaves as a single
driven oscillator: the mean-field amplitude saturates and
grows slowly with A as a solution of the cubic equation r
—-r*=A/G. These features are illustrated by a three-
dimensional (3D) plot of r as a function of A and «; see Fig.
4. The plot shows that as the repulsive forces increase, with
larger values of «, a larger amplitude of driving is required to
overcome the repulsion and form a point cluster.

As follows from the synchronization theory, the threshold
value A. for the onset of synchronization depends on the
frequency mismatch of @ and ;. This threshold vanishes
only the case of w=w; which is considered above. When o
# wj, beats in the individual oscillators precede the onset of
complete synchronization. Due to clustering, these beats av-
erage down in the mean field and decrease its amplitude r.
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FIG. 4. The dependence of RCA output on the coupling strength
k and the amplitude A of the driving signal for N=32, G=5, and

®j=w=2.
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FIG. 5. The dependence of RCA output on the frequency of
received signal f=w/2m for N=32, G=5, @;=2m, and k=1

The occurrence of beats also results in the nonlinearity of
input-output characteristics; see Fig. 5.

A. Phase approximation

This approximation is applicable for G> «,A. Further-
more, for large gain G, the amplitudes of all oscillators are
close to one (see Fig. 2). Ignoring the small deviations ;
—1, we obtain the following equation for the phases:

PHYSICAL REVIEW E 74, 056205 (2006)

N
K . .
pj=w;— ;/E sin(e, — <Pj) +A Sln(¢j_ <Pj) +§, (15)

n=1

where w;=®;—w. Here we also added white zero-mean

Gaussian noise acting independently on all oscillators,
(&1(1)=0,(&(&(1"))=2D &t ~1") 5.

In this approximation the mean field R (array output) can
be written in the form (3), so Eq. (15) becomes

¢j=w;— krsin(y— @) +Asin(¢;— @) +&.  (16)

For large N, the mean field R is not fluctuating and be-
comes a deterministic function. Then we can introduce the
single-oscillator probability distribution function W;(¢,?)
=W(e,t;w;,¢)=(¢—¢;(t)) and write a Fokker-Planck
equation for W(e,1):

IW; d FW
—l = —[F(o)W,]+ D—, 17
Py &(P[ (@) W)] P (17)

where the “phase drift velocity” F;(¢)=w;—kr sin(¢—¢)
+A sin(¢;— @) is a 27-periodic function of ¢ (a similar equa-
tion for the case of nondriven noisy oscillators was derived
in Refs. [25,26] and then often used in bifurcation analyses;
see [22] for a review).

The stationary solution of Eq. (17) satisfying the periodic
boundary condition W;(¢)=W;(¢+2m) is given by (cf.
[9,27])

w;¢+A cos(¢ — ;) — kr cos(¢ = i) + kr cos — A cos ¢,

Wj( ®) = Wj(o)eXP(

: |

¢
(6—27ra)_i/D _ 1)f e[—w_iaﬂcr cos(p—ih)-A COS((/)./_@]/Dda
0

x4y 1+

0

where W;(0) is determined by the normalization condition

2

Wi@lde=1. (19)
0

The mean field R can be calculated as
N

1 .
= j—VE W,()e¢dep. (20)
n=1

For large N we can replace the sum by the integration over
the frequency and driving phase (¢) distributions,

© 2 27
R=f g(w)de H(¢)d¢f deW(p; o, p)e'.
o0 ()

0

(21)

This complex integral equation has to be solved to obtain R.

2w
f e[—wj¢+;<r cos(@-)-A cos(<f>j—¢)]/Dd¢

; (18)

To simplify the problem, we first neglect the noise, D=0.
Then the stationary solution of the Fokker-Planck equation is
much simpler,

V.

' . (22)

w;— krsin(y— @) + A sin(¢p; - @)

Wj( ®) =
where

2 -1
V= lf ddlw;— «rsin(ih— @) + A sin(¢; — )]
(

i

is the normalization constant.

Additional simplification is achieved if one neglects the
frequency spread [g(w)=8(w—wy)] and considers the broad-
side direction signal [H(¢)=8(¢)]. Then the probability dis-
tributions for all oscillators are identical and the self-
consistency equation can be written in the form
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FIG. 6. (Color online) The dependence of the mean-field ampli-
tude r (left panel) and phase ¢ (right panel) on the magnitude of the
incoming signal for several values of the driving frequency detun-
ing w, for repulsive coupling k=1. Dashed lines show the phase of
the mean field for the completely synchronized regime.
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where F(¢)=wy— kr sin(iy—¢)—A sin .

A solution of Eq. (23) can be found numerically by the
method of iterations: we take initial guess values of r, ¢ on
the RHS of Eq. (23), perform the integration, and obtain the
next iteration values ry, ;. Then we substitute them into the
RHS again and so on. The iteration process quickly con-
verges to the correct values of r and . Figure 6 shows the

—— Linear Array
—— A=0.4
—— A=0.9

— A=20

I 72\
0 20 30
Phase Shift (deg)

FIG. 7. (Color online) The dependence of beam pattern on the
amplitude of the received signal A for N=32, G=5, 0;=w=2m, and
k=0.4. 3D plot of the dependence (top panel) and the comparison
of the selected beam patters in NLBF with linear BF (bottom
panel).
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FIG. 8. (Color online) The dependence of beam pattern on the
amplitude of the received signal A with frequency w=2.47. N=32,
G=5, @;=2m, and k=0.4. 3D plot of the dependence (top panel)
and the comparison of the selected beam patters in NLBF with
linear BF (bottom panel).

dependences r(A) and ¢{A) obtained using this method. As
seen from the plots, the theoretical dependences are in good
agreement with the numerical data, Figs. 4 and 5.

For small w,, the solution approaches r=A/«, =0 for
A<k, and r=1 for A> k. It is easy to see that r=—A/k, ¢
=0 is the solution of F(¢;r,#)=0 for w=0. This solution
corresponds to an arbitrary probability distribution satisfying
the condition [W(@)dp=r. At A— k, the probability distri-
bution approaches &(¢); i.e., all oscillators become synchro-
nized with identical phases.

For arbitrary w,, at a certain threshold value of A the
amplitude of the mean field becomes 1, which indicates that
all oscillators acquire identical phases equal to the mean-
field phase . Thus, one can find the phase of the mean field
in the totally synchronized regime as yy=—arcsin(wy/A).

B. Beam-forming performance of the RCA

Here we consider a generalization of the model (15) to
allow signals with different phases acting on different oscil-
lators. In the simplest case, it may correspond to a sinusoidal
signal arriving at a linear oscillator array at a certain angle ®
with respect to the broadside direction; then, the jth oscilla-
tor receives a signal s;=A sin(wt+ ¢;). The phases of the sig-
nals at nearby elements are related as ¢;=¢;_;+A, where the
phase shift depends on the angle ®, wavelength \, and dis-
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FIG. 9. The dependence of beam pattern on the amplitude of the received signal A for different levels of noise: o=1.0 (a), 0=5.0 (b), and

0=20.0 (c). Parameters N=32, G=5, @;=w=2m, and k=0.4.

tance between the elements d, A=360°% cos 0. Such signals
synchronize the array of oscillators and form a specific dis-
tribution of phases along the array. Due to repulsive forces
between the oscillators, their phases will differ from the
phases of the received signals. The oscillator array will tend
to spread these phases. This provides a dynamical mecha-
nism behind the improvement of beam pattern characteristics
in this nonlinear beam former (NLBF).

The beam patterns computed in a chain of 32 nonlinear
oscillators are shown in Fig. 7. The 3D plot of the array
output, r, as function of phase shift A and signal amplitude
shows that the shape of the beam patterns changes with the
amplitude. There exist an optimal value of A in terms of
beam pattern characteristics. At this value of A the main lobe
has the most sharp tip in the broadside direction and the
maxima of sidelobes of the normalized beam pattern are re-
duced to the lowest levels; see Fig. 7(b) (red curve). Our
simulations with various parameter settings indicate that
such optimal values of A occur at the threshold where the
gain of the array start experiences saturation when the phase
array is turned to the direction of the signal source.

In the case when w # w; the synchronization of the array
is characterized by the nonlinear dependence of output r on
the values of input amplitude A; see Fig. 8. The optimal
values of A also increase. The main beam in the NLBF
sharper and the side lobes are 3—4 dB lower than for a con-
ventional beam former; see Fig. 8 (right panel).

C. Synchronization to a noisy signal

Due to the lack of superposition in the nonlinear oscillator
array, noise in the received signal will alter the behavior of
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FIG. 10. (Color online) Normalized beam patterns for N=10,
k=0.4, and w=&;=27 obtained using Chebyshev windows with
30 dB and 40 dB sidelobe ratio.
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FIG. 11. (Color online) Normalized beam patterns for N=10,
sidelobe ratio and four different values of driving frequency.

the NLBF. To explore these changes we simulated the array
of oscillators that receives a sinusoidal plane wave of ampli-
tude A and white Gaussian noise with standard deviation o.
The noise signals acting on different oscillators were uncor-
related. Beam patterns in these simulations were plotted us-
ing power spectrum analysis of the output mean field 22’: 1Zne
The power spectrum distribution was computed using Han-
ning window for 1024 samples generated with
50 samples/sec and averaged 5 times. Harmonic /# occurred
in the spectrum of the mean field at the frequency of the
sinusoidal source signal was treated as the output signal
NLBF. The beam pattern computed for the amplitude of the
harmonic % is shown in Fig. 9.

The simulations show that additional noise decreases the
NLBF gain. As a result the optimal values of amplitude A
increase; compare Figs. 9(a)-9(c). The decrease of the gain
can be explained by the influence of noise on the quality of
synchronization. The noise tends to reduce the synchrony in
the array by spreading the cluster of phases. As a result
higher values of the external synchronizing signal are needed
to form the cluster.

IV. SHADING FOR THE NLBF

The results presented above show that the use of synchro-
nizing oscillators in phase array antennas allows one to re-
duce the levels of sidelobes by 2—4 dB. However, in the
theory of conventional (linear) arrays there are techniques of

PHYSICAL REVIEW E 74, 056205 (2006)
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k=0.4, and @;=27 obtained using a Chebyshev window with 30 dB

beam pattern synthesis that allow one to reduce sidelobes to
much lower levels at the expense of the main beamwidth.
This is done by applying appropriate windowing to the array
signals, which is known as shading. A popular approach to
forming amplitude tapers is the Dolph-Chebyshev technique
which gives the narrowest possible main lobe for a given
maximum sidelobe level [28-30].

In order to apply shading to the array of oscillators we
rewrite Eq. (1) in the following form:

2= (G+iw)zj— Glzjl’zj+ R — 7] +5;(t),  (24)

where the complex “shaded” mean field

N
R(1) = }VE WZu(1) (25)
n=1

replaces the standard mean field R(7) used earlier. Here w,,
are weights used for the shading. The modified mean field
(25) is also used as the output signal of the NLBF. The
weights w,, can be computed using the MatLab function che-
bwin (N, Q), where N is the number of elements and Q is the
difference between magnitudes of sidelobes and the main
beam in dB.

Here we present the results obtained for a line array of ten
elements. To evaluate how shading affects the beam patterns
we apply the input signal s;()=A sin(wt+jA) to each oscil-
lator and compute the amplitude of the mean field, r
=(|R(¢)|), and the amplitude of the harmonic at the frequency
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® measured in the power spectrum of Im R(7). The beam
patterns plotted for these amplitudes are denoted “NLBF mf”
and “NLBF h,” respectively. The results are compared with
the harmonic amplitude in the power spectrum of the output
signal in the standard linear beam former “LBF h” computed
with the same shading coefficients. We use the parameters of
the array, k=0.4, G=5, and wj=277, and the amplitude of
input signals is set close to the optimal value of the NLBE,
A=0.9.

Figure 10 shows the beam patterns obtained with Cheby-
shev coefficients evaluated for the cases of Q=30 dB (top)
and 0=40 dB (bottom). In the first case the values of the
mean field and the harmonic amplitudes are close to each
other for all values of the phase shift A. This is indicative of
the synchronization between the oscillators and the input sig-
nal. In the second case the synchronization apparently be-
comes unstable within the range of A from 110° to 130°
where beats in the mean field occur. Comparison of NLBF h
with LBF h shows that sidelobes in the nonlinear beam
former are about —2.5 dB lower than in the standard shaded
array. This effect is mostly due to the reshaping (sharpening)
of the main beam and the normalization of the beam patterns
to their maximum values.

The beam patterns presented in Fig. 11 show how the
frequency mismatch between w and w;=2 influences the
shading effect and synchronization of the oscillators. The
two top panels present the beam patterns for the cases when
the frequency mismatch is relatively small (about 5%) and
synchrony to the input signal is preserved. When the fre-
quency mismatch increases beyond the synchronization
thresholds the effect of shading in the oscillator array dete-
riorates rapidly. The destruction of synchronization between
the signal and oscillators can be easily seen in the behavior
of the mean field “NLBF mf.” Therefore, the shading tech-
nique can improve the beam pattern of NLBF only when the
frequencies of the oscillators are close to the frequency of the
source signal.

The effect of noise on the shading quality is illustrated by
Fig. 12 which shows shaded beam patterns for two values of
the standard variance o of the white Gaussian noise added to
the sinusoidal input signal. For small levels of noise the
NLBF provides an improvement over the standard beam
former (LBF); see Fig. 12 (top). However, with an increase
of noise to moderate levels this effect decreases Fig. 12 (bot-
tom).

V. CONCLUSION

In this paper we considered the dynamics of repulsively
coupled Stuart-Landau oscillators in the autonomous regime
as well as under the influence of external periodic signal.
Without external driving, this system quickly converges to a
regime which minimizes the mean field. For identical oscil-
lators, the mean field turns into zero for any nonzero cou-
pling coefficient, whereas for nonidentical frequencies, the
mean field remains finite at any finite value of the coupling.
Furthermore, for the number of oscillators N> 3, the repul-
sive coupling fails to synchronize the array and the mean

PHYSICAL REVIEW E 74, 056205 (2006)
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FIG. 12. (Color online) Normalized beam patterns for N=10,
G=5, k=04, and w=®;=2 obtained using a Chebyshev window
with 30 dB sidelobe ratio in the case of additive noise.

field remains fluctuating for any value of the coupling con-
stant. In case of a driven array, the mean field remains non-
zero even for identical oscillators. We found the amplitude of
the mean field as a function of external driving and fre-
quency detuning analytically using a phase approximation
and solving the self-consistency equation.

Using a line array of globally coupled identical oscillators
as a model for a phase array receiving antenna we studied the
effect of repulsive coupling of the formation of beam pat-
terns. The sinusoidal signal received from the broadside di-
rection of the array can synchronize the array oscillators in a
uniform state of the phase distribution. The threshold ampli-
tude of the signal required for such a synchronization is pro-
portional to the strength of the repulsive coupling among the
oscillators. When the signal source is moved out of the
broadside direction the input signals have different phases at
the inputs of the oscillators. In this case repulsive coupling
alters the original distribution of the phases in the synchro-
nized array toward reduced values of the mean-field
amplitude—i.e., spreading the oscillators phases. This non-
linear mechanism results in a change of the beam pattern.
The tip of the main beam becomes sharper and the levels of
sidelobes are reduced. The effect is larger when the oscilla-
tors are near the threshold where synchronization to the sig-
nal overcomes the repulsive forces.
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